Jan's Blog on DFIR, TI, REM, GSoC....

Dump Linux process memory



If you need to acquire the process memory of a process running on a Linux system, you can use gcore 1 to create a core file or alternativly retrieve its memory areas from /proc/<PID>/maps and use GDB 2 itself to dump the content to a file. For a convenient way to do this, refer to the a basic shell script hosted as a gist named dump_pmem.sh 3.


It is well known, that process memory contains a wealth of information, therefore it is often need to inspect the memory contents of specific process. Since I wanted to write autopkgtests for the continuous integration of memory forensics-software packaged as Debian packages, I was looking for a convenient way to dump the process memory (preferrably with on-board equipment).

One-liner solution

I found a neat solution from A. Nilsson on serverfault.com 4, which I enhanced to create a single output file. Basically it reads all memory areas from the proc-filesystem, which is a pseudo-filesystem providing an interface to kernel data structures 5 and then utilizies gdb’s memory dumping capability to copy those memory regions into a file 6.

To use the one-liner-solution, which is a bit ugly indeed, just modify the PID and run the following command:

sudo su -; \
PID=2633; \
grep rw-p /proc/${PID}/maps \
| sed -n 's/^\([0-9a-f]*\)-\([0-9a-f]*\) .*$/\1\t\2/p' \
| while read start stop; \
    do sudo gdb --batch --pid ${PID} -ex "append memory ${PID}.dump 0x$start 0x$stop" > /dev/null 2>&1; \

Note, that GDB has to be available on the system, whereas glibc-sources are not required.

Script dump_pmem.sh

Furthermore, I created a basic shell script, which can be found at


It simplifies the process of dumping and creates an additional acquision log (which is printed to stderr). This is how you use it:

sudo ./dumpmem.sh

	dump_pmem.sh <PID>

	./dump_pmem.sh 1137 > 1337.dmp

Note, that root-permissions are obviously needed and a process ID has to be supplied as positional argument. The resulting output has to be redirected to a file. Informational output printed to stderr looks like the following snippet:

2021-05-27T08:48:34+02:00       Starting acquision of process 1337
2021-05-27T08:48:34+02:00       Proc cmdline: "opensslenc-aes-256-cbc-k-p-mdsha1"
2021-05-27T08:48:34+02:00       Dumping 55a195984000 - 55a19598c000
2021-05-27T08:48:34+02:00       Dumping 55a19598c000 - 55a19598e000


2021-05-27T08:48:36+02:00       Dumping 7f990d714000 - 7f990d715000
2021-05-27T08:48:37+02:00       Dumping 7ffe3413f000 - 7ffe34160000
2021-05-27T08:48:37+02:00       Resulting SHA512: cb4e949c7b...

Note, that the script currently does not performs zero-padding for recreating the virtual address space as seen by the process.

If you have any notes, proposals or comments, please contact me under ca473c19fd9b81c045094121827b3548 at digital-investigations.info.


Tags: DFIR linux